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Abstract

KL approximation of a possibly instationary random field a(x,x) 2 L2(X,dP;L1(D)) subject to prescribed meanfield
EaðxÞ ¼

R
X aðx; xÞdPðxÞ and covariance V aðx; x0Þ ¼

R
Xðaðx; xÞ � EaðxÞÞðaðx; x0Þ � Eaðx0ÞÞdPðxÞ in a polyhedral domain

D � Rd is analyzed. We show how for stationary covariances Va(x,x 0) = ga(|x � x 0|) with ga(z) analytic outside of z = 0,
an M-term approximate KL-expansion aM(x,x) of a(x,x) can be computed in log-linear complexity. The approach applies
in arbitrary domains D and for nonseparable covariances Ca. It involves Galerkin approximation of the KL eigenvalue
problem by discontinuous finite elements of degree p P 0 on a quasiuniform, possibly unstructured mesh of width h in
D, plus a generalized fast multipole accelerated Krylov-Eigensolver. The approximate KL-expansion aM(x,x) of a(x,x)
has accuracy O(exp(�bM1/d)) if ga is analytic at z = 0 and accuracy O(M�k/d) if ga is Ck at zero. It is obtained in
O(MN(logN)b) operations where N = O(h�d).
� 2006 Elsevier Inc. All rights reserved.
1. Introduction

Accurate numerical prediction of properties for mass produced specimens requires accounting for uncer-
tainties in their components. Testing procedures (destructive or nondestructive) that are limited to sample
specimens allow only to collect statistical data of mass-manufactured components. They can, in general,
not ascertain material properties for any particular specimen.

This mandates statistical modelling of, for example, spatially inhomogeneous material and solution char-
acteristics in finite element simulations.

To this end, we employ a probability space (X,R,P) and assume that the material property of interest is a
spatially inhomogeneous random field, i.e., a P-measurable map a(Æ,x): X! L1(D). To be able to speak
about mean and variances of a(x,x) we assume
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a 2 L2ðX; dP ; L1ðDÞÞ: ð1:1Þ

Random fields (1.1) arise in two broad classes of applications:

1. Measurements MN ¼ fajðxÞ : j ¼ 1; . . . ;Ng of a can be considered as realization of N independent random
variables fajð�;xÞgN

j¼1 distributed identically to the underlying random field a(x,x). For example, in digi-
tized light microscopy or computer tomography, samples a(Æ,xj) correspond to (pixel or voxel) datasets that
are too large as input data for continuum mechanical simulations. Besides accounting for measurement
uncertainty, statistical modelling of a(x,x) serves the purpose of data reduction, i.e., description of the ran-
dom field’s statistics in terms of a finite, preferably small, number of parameters.

2. In subsurface flow and reservoir simulation, there is only one ‘‘specimen’’ with given, deterministic a(x).
Information about a(x) can only be gathered in a few points, so that here MN ¼ faðxjÞ : j ¼ 1; . . . ;Ng,
and the uncertainty in spatial variation of a(x) in between xj is modelled by statistical procedures (see,
e.g. [2,3,13,16,25] for more on this). The uncertainty in a(x) is once more described by a random field (1.1).

Given a random diffusion coefficient a(x,x), prediction of, say, concentration u(x,x) requires solution of a
stochastic partial differential equation such as
f ðxÞ þ divðaðx;xÞruðx;xÞÞ ¼ 0 in D: ð1:2Þ
The simplest approach to solution of (1.2) is Monte-Carlo (MC) simulation. Here, samples a(x,xj) of a(x,x)
with prescribed statistical properties are generated and, for each sample, a deterministic problem (1.2) is solved
for u(x,xj). From a sufficiently large set of solution samples, moments of the random solution u(x,x) can be
estimated.

An alternative to MC simulation is the Stochastic Galerkin Method. Proposed originally by Ghanem and
Spanos [10], one selects a basis in (and thereby introduces coordinates into) L2(X,dP). Then a(x,x) is approx-
imated by separating deterministic and stochastic variables, i.e., by
aMðx;xÞ ¼
XM

m¼1

/mðxÞY mðxÞ; ð1:3Þ
where Ym: X! Xm are suitably chosen random variables with ranges Xm � R and probability measures
pm(dym) = pm(ym)dym.

The random solution u(x,x) 2 L2(X,dP;V) (with V denoting a suitable Hilbert space of finite energy
solutions) of (1.2) is projected onto some suitable finite dimensional space ðPM

m¼1Xm;RM ; P MÞ where RM is
the r-algebra of Borel subsets of PM

m¼1Xm and PM = p1(dy1) �� � �� pM(dyM).
The computational efficiency of the stochastic Galerkin approach strongly depends on judicious selection of

the ‘‘coordinates’’ Ym in L2(X,dP) [8,15]. Wiener introduced and many investigators afterwards (e.g. [7,10,26]
and the references there) used so-called random field ‘‘chaos’’ expansions (of u(x,x)) in Hermite polynomials
of Gaussian random variables Ym which are orthogonal with respect to the Gaussian probability density. They
are dense in L2(X,dP) but not problem-adapted. Analogous polynomial systems which are orthogonal with
respect to more general probability measures were proposed recently [22,27].

Due to the high cost of the stochastic Galerkin FEM for large M [5,8,23], considerable computational work
could (and should) be spent on finding ‘optimal’ (with respect to an error measure for a � aM) separated
approximations (1.3) of a.

In this paper, we address this issue under assumption (1.1), if a � aM is measured in L2(X,dP;L2(D)). In this
case, an approximation (1.3) with certain optimality properties is obtained by truncating the Karhunen–Loéve
(KL) expansion of a(x,x). To define the KL-expansion, we assume that the known information on a(x,x)
includes mean field and two-point correlation, i.e., that
EaðxÞ :¼
Z

X
aðx;xÞdPðxÞ and Caðx; x0Þ :¼

Z
X

aðx;xÞaðx0;xÞdP ðxÞ ð1:4Þ
are known. An equivalent assumption is that the mean field Ea and its covariance Va are known, since by
definition,
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V aðx; x0Þ :¼ Caðx; x0Þ � EaðxÞEaðx0Þ: ð1:5Þ

Due to (1.1), the 2-point correlation of a(x,x) is well-defined and belongs to L1(D · D). Associate with Va a
compact, self-adjoint operator Va : L2ðDÞ ! L2ðDÞ via
ðVauÞðxÞ ¼
Z

x02D
V aðx; x0Þuðx0Þdx0 ð1:6Þ
and denote by ðkm;/mðxÞÞ
1
m¼1 the sequence of its eigenpairs, with k1 P k2 P� � �P km ! 0 and with ð/mðxÞÞ

1
m¼1

constituting an orthonormal basis of L2(D). Then the KL expansion of the random field (1.1) takes the form
aðx;xÞ ¼ EaðxÞ þ
X1
m¼1

ffiffiffiffiffi
km

p
/mðxÞX mðxÞ; ð1:7Þ
where Xm(x) are centered at 0, pairwise uncorrelated random variables on probability spaces ðXm;Rm; P mÞm2N.
They relate to a(x,x) via
ffiffiffiffiffi

km

p
X mðxÞ ¼

Z
x2D
ðaðx;xÞ � EaðxÞÞ/mðxÞdx m ¼ 1; 2; . . . ð1:8Þ
Note that, in order to allow a proper parametrization of the uncertainty space (independence of the coordi-
nates), the family ðX mÞ1m¼1 of random variables in the Karhunen–Loève expansion is often assumed to be inde-
pendent. This might not be the case in general for an arbitrary random field a, so that the independence
assumption could in fact introduce an additional data representation error.

We compute a KL-approximation of a(x,x) based on MN by truncation of (1.7) after M terms and by Galer-

kin approximation of the first M KL-eigenpairs, for given covariance kernel Va: if ðkh
m;/

h
mðxÞÞ

M
m¼1 denote approx-

imate eigenpairs of Va in (1.6) based on a one-parameter family of subspaces Sh � L2(D), the corresponding
approximate KL-expansion ah

Mðx;xÞ of the random field a(x,x), based on MN , is given by
ah
Mðx;xÞ ¼ EaðxÞ þ

XM

m¼1

ffiffiffiffiffi
kh

m

q
/h

mðxÞX h
mðxÞ; ð1:9Þ
where the laws ph
m of the random variables X h

m : X! R can be determined from experiments MN and from

ðkh
m;/

h
mðxÞÞ

M
m¼1 by a maximum likelihood estimate
min
Y h

mðxÞ

X
aðxÞ2MN

aðx;xÞ � EaðxÞ þ
XM

m¼1

ffiffiffiffiffi
kh

m

q
/h

mðxÞY h
mðxÞ

( )�����
�����

2

L2ðX�DÞ

: ð1:10Þ
The laws ph
m of Y h

m are constrained such that the product measures P MðxÞ :¼ �M
m¼1p

h
mðxÞ are probability mea-

sures which approach, as M!1 and h! 0, the law of a(x,x), i.e., measure P. Since the decay of a� ah
M with

ah
M in (1.9) as M!1 is essential for the complexity of the stochastic Galerkin approximation of (1.2), we

analyze the decay of km and the regularity of /m(x) in dependence on the smoothness of Va(x,x 0). We show
that the M-term KL truncation error behaves, asymptotically as M!1, as the best approximation error of
a(x,x) from the usual FE-spaces in D. However, for any finite and, particularly, small values of M, the
KL-expansion is the best possible M-term approximation of a(x,x) in L2(X · D).

The efficient computation of approximate Karhunen–Loève expansions (1.9) of a possibly nonstationary
random field a(x,x) in a polyhedral domain D � Rd for given mean field Ea(x) and subject to arbitrary, pre-
scribed spatial covariance function Va(x,x 0) is the purpose of the present paper. Our approach is based on a
Ritz–Galerkin approximation of the KL-eigenvalue problem
Vau ¼ ku: ð1:11Þ

Since the covariance operator Va in (1.6) is nonlocal, the matrix of its Galerkin discretization is fully populated.

We approximate the leading M eigenpairs of Va by a Krylov subspace iteration [9] requiring only matrix–
vector multiplies. The fully populated moment matrix of the discretized covariance Va need never be formed
explicitly, since an approximate matrix vector multiplication can be realized in linear complexity by a general-
ized fast multipole method (gFMM) in D.
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This algorithm extends the Greengard–Rokhlin method (e.g. [12] and the references there) which was devel-
oped and highly optimized for the Coulomb potential to most covariances Va(x,x 0) used in statistical model-
ling of spatially inhomogeneous random fields (e.g. [2,3,20]), trading generality for efficiency in replacing
spherical harmonic expansions with tensorized polynomial interpolants, but retaining fast shift operations.

To ensure well-posedness of (1.2), we assume in addition to (1.1) that a 2 L1(D · X) is strictly positive,
with lower and upper bounds a� and a+, respectively,
0 < a� 6 aðx;xÞ 6 aþ <1; k� P -a:e: ðx;xÞ 2 D� X: ð1:12Þ
Note that the existence of Ca and Va is ensured by (1.1) and by (1.12).
The outline of the paper is as follows: in Section 2, we present formal definitions and properties of the KL-

expansion of random fields. We then give estimates on the rate of decay of the KL eigenvalues km. These esti-
mates are crucial in determining the approximation rate of truncated, M-term KL-expansions. In Section 3,
we discuss the Galerkin approximation of truncated M-term KL-expansions, for given kernel Va(x,x 0). Sec-
tion 4 addresses the generalized fast multipole method, gives algorithmic details such as kernel interpolation
and the realization of the shift operations, and establishes exponential convergence with respect to the expan-
sion order of the multipole error.

2. Karhunen–Loève expansion

We introduce the definitions and basic properties of KL expansions of random fields a(x,x) which are of
second order, i.e., which satisfy (1.1). The basic reference is [17], Chapter XI. We analyze the rate of decay of
the KL eigenvalues and regularity of the KL eigenfunctions.

2.1. Correlation, KL expansion

Let ðH 1; h; iH1
Þ; ðH 2; h; iH2

Þ and (S,Æ,æS) be separable Hilbert spaces. If (sm)m2K is an orthonormal basis
(ONB) in S (K is either finite or Nþ), any element f 2 H1 � S can be uniquely represented as a convergent
series
f ¼
X
m2K

fm � sm: ð2:1Þ
It is then easy to prove

Proposition 2.1. The mapping
H 1 � S � H 2 � S 3 ðf ; gÞ ! Cfg :¼
X
m2K

fm � gm 2 H 1 � H 2 ð2:2Þ
is well-defined, bilinear and bounded with norm 1, and it does not depend on the choice of the basis (sm)m2K in S.

Based on Proposition 2.1 we give the following:

Definition 2.2. For f 2 H1 � S and g 2 H2 � S, we call Cfg 2 H1 � H2 defined in Proposition 2.1 the
correlation of the pair (f,g).

If H1 = H2 = H and the corresponding scalar products also coincide, we show next that the set
{Cf := Cff : f 2 H � S} of all correlation kernels is in one-to-one correspondence with a certain class of oper-
ators on H.

We denote by BsymðHÞ the space of symmetric bounded linear operators in a Hilbert space (H,Æ,æH), while
for p > 0, Bsym;pðHÞ will be the space of symmetric compact linear operators in H whose eigenvalue sequence
belongs to ‘p. The operators in Bsym;1ðHÞ are termed trace class.

Theorem 2.3. If (H,Æ,æH) and (S,Æ,æS) are separable Hilbert spaces of the same dimension and (sm)m2K is an ONB

in S, the correlations of elements in H � S are in a one-to-one correspondence with the positive definite trace class

operators in H, via
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X
m2K

fm � fm ¼ Cf ! Cf : H 3 x!
X
m2K
hfm; xiH � fm 2 H ð2:3Þ
for f ¼
P

m2Kfm � sm.

Proof. Obviously, the operator Cf defined on the r.h.s. of (2.3) is compact as a norm limit of finite rank oper-
ators obtained by truncating the series. The positivity of Cf is also clear, so it remains to check that its trace is
finite. Choosing (em)m2K ONB in H, we have
TrCf ¼
X
m2K
hCf em; emiH ¼

X
m2K

X
n2K
hfm; eni2H ¼

X
m2K
kfmk2

H ¼ kf k
2
H�S <1: ð2:4Þ
The mapping (2.3) is therefore well-defined. From the identity
hCf x; yiH ¼ hCf ; x� yiH�H 8x; y 2 H ; ð2:5Þ
it follows that the definition of Cf does not depend on the basis (sm)m2K and that the mapping (2.3) is injective.
We check the surjectivity of (2.3). To this end, let C be a positive definite trace class operator in H. C is in

particular compact and has an eigenpair sequence (km,/m)m2K,
C/m ¼ km/m 8m 2 K: ð2:6Þ
The eigenvalues (km)m2K have finite multiplicity, their sequence is nonincreasing and may accumulate only in 0.
Moreover, the trace class condition reads
X

m2K
km <1: ð2:7Þ
Then the series
X
m2K

ffiffiffiffiffi
km

p
� /m � sm ð2:8Þ
converges due to (2.7) to an element f 2 H � S for which we clearly have
Cf ¼
X
m2K

km � /m � /m: ð2:9Þ
From (2.5), (2.6) and (2.9) it follows that Cf has the same spectral decomposition as C, i.e., Cf ¼ C. h

As a consequence of Theorem 2.3 it is easily seen that

Corollary 2.4. Let (H,Æ,æH) be a separable Hilbert space and C 2 H � H be a correlation kernel. Then in terms

of the spectral decomposition (2.6) of C 2 Bsym;1ðHÞ defined as in (2.5), C can be represented as
C ¼
X
m2K

km � /m � /m: ð2:10Þ
We next give a description of all the elements in H � S with a given correlation kernel.

Theorem 2.5. Consider (H,Æ,æH), (S,Æ,æS) separable Hilbert spaces and C 2 H � H a correlation kernel, together

with its representation (2.10). Then f 2 H � S satisfies Cf = C iff there exists an orthonormal family (Xm)m2K � S,

such that
f ¼
X
m2K

ffiffiffiffiffi
km

p
/m � X m: ð2:11Þ
Proof. The ‘if’ part follows by the arguments used to conclude the proof of Theorem 2.3, after completing the
family (Xm)m2K to an ONB.
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Conversely, if Cf = C, then we expand
f ¼
X
m2K

/m � Y m ð2:12Þ
with (Ym)m2K � S, from which it follows via Proposition 2.1X

Cf ¼

m;m02K
hY m; Y m0 iS � /m � /m0 : ð2:13Þ
Comparing (2.13) and (2.10), it follows that
hY m; Y m0 iS ¼ kmdmm0 ð2:14Þ
and (2.11) holds with X m :¼ Y m=
ffiffiffiffiffi
km

p
. h

Definition 2.6. The expansion (2.11) of f in terms of the spectral decomposition of Cf is called the Karhunen–
Loève expansion of f.

Partial sums of the KL expansion of f 2 H � S are optimal approximations of f in subspaces of H � S

which are finite dimensional in the first argument.

Theorem 2.7. If f 2 H � S has the KL expansion (2.11), then for any M 2 N it holds
inf
U�H

dimU¼M

kf � P U�Sf k2
H�S ¼

X
mPMþ1

km ð2:15Þ
and is attained only for U = Span{/1,/2, . . . ,/M} (and g consequently the Mth truncate of (2.11)).

Proof. It is clear that the equality holds for U = Span{/1,/2, . . . ,/M}, since PU�Sf is then the Mth truncate of
(2.11). It is also clear that (2.15) holds for M = 0. It suffices therefore to prove that the infimum in (2.15) can-
not be smaller than the r.h.s. of (2.15). We argue by induction on M.

Note first that w.l.o.g. we can assume the family (Xm)m2K to be an ONB of S. Consider now U � H of
dimension M and g 2 U � S. g can be written as
g ¼
X
m2K

um � X m ð2:16Þ
with um 2 V. Then we have
kf � gk2 ¼
X
m2K

kmk/m � umk2
: ð2:17Þ
Define now N 2 N to be the largest integer such that for W := Span{u1,u2, . . . ,uN} it holds dim W = M � 1.
Clearly, N 6M � 1 and from (2.17) we deduce
kf � gk2 ¼
X
m6N

kmk/m � umk2 þ
X

mPNþ1

kmk/m � umk2

¼
X
m2K

kmk/m � P W umk2 �
X

mPNþ1

kmðk/m � P W umk2 � k/m � umk2Þ

P
X
m2K

kmk/m � P W umk2 �
X

mPNþ1

kmkP U�W ð/m � P W umÞk2

¼
X
m2K

kmk/m � P W umk2 �
X

mPNþ1

kmkP U�W /mk
2 P

X
m2K

kmk/m � P W umk2 � kM ; ð2:18Þ
since U § W is one-dimensional and N P M � 1. W being M � 1 dimensional, (2.17) and (2.18) show that
kf � gk2 P inf
U�H

dimU¼M�1

inf
h2U�S

kf � hk2 � kM : ð2:19Þ
Taking the infimum over g and U in (2.19), the conclusion follows by induction on M. h
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As an example, let us specialize now Theorem 2.5 by choosing as in Section 1 H := L2(D) and
S := L2(X,dP) and obtain (see also [17]).

Proposition 2.8. If a 2 L2(D · X), then there exists a sequence of random variables (Xm)mP1 � L2(X,dP)

satisfying
Z
X

X mðxÞdP ðxÞ ¼ 0;

Z
X

X nðxÞX mðxÞdPðxÞ ¼ dnm 8n;m P 1 ð2:20Þ
and such that the random field a can be expanded in L2(D · X) as
aðx;xÞ ¼ EaðxÞ þ
X1
m¼1

ffiffiffiffiffi
km

p
/mðxÞX mðxÞ; ð2:21Þ
where (km,/m)mP1 is the eigenpair sequence of the Carleman operator
Va : L2ðDÞ ! L2ðDÞ; ðVa/ÞðxÞ :¼
Z

D
V aðx; x0Þ/ðx0Þdx0 8/ 2 L2ðDÞ ð2:22Þ
and V a :¼ Ca�Ea . Moreover, for km 6¼ 0,
X mðxÞ :¼ 1ffiffiffiffiffi
km

p
Z

D
ðaðx;xÞ � EaðxÞÞ/mðxÞdx 8m P 1: ð2:23Þ
Definition 2.9. The r.h.s. of (2.21) is called the Karhunen–Loève expansion (KL expansion for short) of the
random field a 2 L2(D · X).

Let us briefly discuss the optimality result Theorem 2.7 in this context. The (mean square) approximability
of a(x,x) by its KL truncates via Theorem 2.7 relies on the knowledge of the exact eigenfunctions (which are
not available in practice), and on modeling the random variables given by (2.23) (achievable by testing the
measurements MN against the eigenfunctions, assumed to be known). Thus in general the optimal approxima-
tions of the random field a(x,x) cannot be found, unless the covariance kernel and the domain D have simple
structure (as, e.g. when Va is separable and D of tensor product type; cf. e.g. [10]). However, nearly optimal
approximations can be constructed using computed (necessarily inexact) eigenfunctions of Va, that is, exact
eigenfunctions of P UVaP U , where U � L2(D) is a finite element space and PU is a suitable (quasi-)interpolation
operator. We formulate the corresponding result in the abstract setting of Theorem 2.7.

Theorem 2.10. If f 2 H � S and U is a closed subspace of H, we denote by (km,/m)mP1 and (kU,m,/U,m)mP1 the

eigenpair sequences of Cf and P UCf P U , respectively. For any M 2 Nþ we define WM := span{/U,m |1 6
m 6M}. Then
dimW M ¼ M ; kf � P W M�Sf k2
H�S ¼

XM

m¼1

ðkm � kU ;mÞ þ
X1

m¼Mþ1

km: ð2:24Þ
Proof. Denote further by ðkW >M ;m
ÞmP1 the eigenvalue sequence of P W >M

Cf P W >M
, where W >

M is the orthogonal com-
plement of WM in H. We have successively
kf � P W M�Sf k2
H�S ¼ kP W >M�Sf k2

H�S ¼
X1
m¼1

kW >M ;m
¼ TrP W >M

Cf P W >M
¼ TrCf � Tr P W MCf P W M

¼
X1
m¼1

km �
XM

m¼1

kU ;m: �
Definition 2.11. If f 2 H � S, U is a closed subspace of H and M 2 N [ f1g, we denote by (kU,m,/U,m)mP1

the eigenpair sequence of P UCf P U 2 Bsym;1ðUÞ and by WM the space spanned by (/U,m)16m6M. Then there
exists an orthonormal family (XU,m)16m6M � S such that



C. Schwab, R.A. Todor / Journal of Computational Physics 217 (2006) 100–122 107
P W M�Sf ¼
X
mP1

ffiffiffiffiffiffiffiffiffi
kU ;m

p
/U ;m � X U ;m ð2:25Þ
and we call the expansion (2.25) the (U,M)-quasi Karhunen–Loève (KL) expansion of f.

Note that the (H,1)-quasi KL expansion coincides with the KL expansion of f constructed in Theorem 2.5.

Remark 2.12. In our applications below, the subspace U will be a finite element (FE) subspace of dimension
N = dim(U) <1 much larger than M. The projection (2.25) can be understood as projection of f onto the
principal components of U.

If no eigensolver is available, the random field a(x,x) still can be approximated by an expansion separating
the deterministic and stochastic parts and obtained by testing a(x,x) against a basis of an arbitrary space
U � L2(D). The accuracy of this approximation is just as high as that of the U � U Galerkin approximation
of Va. We further note that, although weaker than the approximation method presented in Theorem 2.7, (2.25)
can become (e.g., in the case of an analytic covariance Va) asymptotically, i.e., as M!1, optimal.

Proposition 2.13. Consider H,S separable Hilbert spaces and (Um)mP1 a nested, dense sequence of closed

subspaces of H. If f 2 H � S, define for any m P 1
em :¼ kCf � P Um�Um CfkH�H : ð2:26Þ
Then for any M P 1 it holds
kf � P UM�Sf k2
H�S 6

X1
m¼M

ðdim Umþ1 � dim UmÞ1=2em: ð2:27Þ
Proof. For m P 1 let us denote by Nm the dimension of Um and choose (/m)mP1 ONB in H such that
U m ¼ spanf/1;/2; . . . ;/Nm

g for any m P 1. Then there exists a family (Xm)mP1 � S such that
f ¼
X
mP1

/m � X m; Cf ¼
X

m;m0P1

hX m;X m0 iS/m � /m0 : ð2:28Þ
Clearly then,
kf � P UM�Sf k2
H�S ¼

X
m>NM

/m � X m

�����
�����

2

H�S

¼
X

m>NM

kX mk2
S: ð2:29Þ
But, using (2.28),
X
m>NM

kX mk4
S 6

X
maxfm;m0g>NM

jhX m;X m0 iS j
2 ¼ kCf � P UM�UM Cf k2

H�H ¼ e2
M ;
from which we deduce via the Cauchy–Schwarz inequality and for any M P 1
X
NM<m6NMþ1

kX mk2
S 6 ðNMþ1 � N MÞ1=2

X
NM<m6NMþ1

kX mk4
S

 !1=2

6 ðN Mþ1 � NMÞ1=2eM : ð2:30Þ
The conclusion follows inserting (2.30) in (2.29). h

Since we are interested in the KL expansion of stochastic coefficients a(x,x) of partial differential equations
such as the diffusion equation (1.2), a sufficient condition for P-a.s., pointwise a.e. in D convergence of (2.21) is
of interest.

Proposition 2.14. The KL series (2.21) converges P-a.s. in L1(D) if
X1
m¼1

kmðlog mÞ2k/mk
2
L1ðDÞVarðX mÞ <1: ð2:31Þ
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Follows from [17] Theorem 36.B (i), applied to
ffiffiffiffiffi
km

p
k/mkL1ðDÞX mðxÞ if we note the Xm in (2.21) satisfy

(2.20), i.e., have mean zero and are pairwise uncorrelated.
2.2. KL eigenvalue decay

From Proposition 2.14, the pointwise convergence of the KL expansion (2.21) is related to eigenvalue decay
and to pointwise eigenfunction bounds. We now prove such decay rates for the KL eigenvalues in terms of
regularity of the covariance kernel Va (pointwise eigenfunction bounds will be considered in the following
section).

Definition 2.15. A correlation function V a : D� D! R is said to be piecewise analytic/smooth/Hp,q on D · D

(p,q 2 [0,1[) if there exists a partition D ¼ fDjgJ
j¼1 of D into a finite sequence of simplices Dj and a finite

family G ¼ fGjgJ
j¼1 of open sets in Rd such that
D ¼
[J
j¼1

Dj; Dj � Gj 81 6 j 6 J ; ð2:32Þ
and such that V ajDj�Dj0
has an extension to Gj � Gj0 which is analytic in Gj � Gj0 /is smooth in Gj � Gj0/ is in

Hp;qðGj � Gj0 Þ :¼ HpðGjÞ � H qðGj0 Þ, for any pair (j, j 0). We denote by AD;GðD2Þ=C1D;GðD2Þ=H p;q
D;GðD2Þ the corre-

sponding regularity spaces. Similarly we introduce spaces of piecewise regular functions defined on D, which
we denote by AD;GðDÞ=C1D;GðDÞ=H p

D;GðDÞ.

To prove decay estimates for the eigenvalues of a piecewise analytic kernel (in the sense of Definition 2.15)
we need the following auxiliary result.

Lemma 2.16. Let (H,ÆÆ,Ææ) be a Hilbert space and C 2 BðHÞ be symmetric, nonnegative and compact operator

whose eigenpair sequence is denoted by (km,/m)mP1.

If m 2 N and Cm 2 BðHÞ is an operator of rank at most m, then
kmþ1 6 kC� CmkBðHÞ: ð2:33Þ
Proof. Straightforward application of the minimax principle,
kmþ1 ¼ min
V�H

dimV ?6m

max
/2V
k/kH¼1

hC/;/i 6 max
/2ðRanCmÞ?
k/kH¼1

hC/;/i ¼ max
/2ðRanCmÞ?
k/kH¼1

hðC� CmÞ/;/i 6 kC� CmkBðHÞ: �
We require approximation properties of the FE-spaces Sp
hðDÞ. By H kðDÞ we denote the functions which

belong to Hk(Dj) for every Dj 2 D. Then we have

Proposition 2.17. Let Sp
hðDÞ denote the space of discontinuous, piecewise polynomial functions of total degree

p P 0 on a quasiuniform triangulation Mh of mesh width h subordinate to the partition D of D and denote by

N ¼ dim Sp
hðDÞ its dimension. Denote by P h : L2ðDÞ ! Sp

h the L2(D) projection. Then for every u 2 H kðDÞ it

holds, as h/(p + 1)! 0,
ku� P hukL2ðDÞ 6 CðkÞðh=ðp þ 1ÞÞminfpþ1;kg
6 CðkÞN�minfpþ1;kg=d ð2:34Þ
and, if u is analytic in each Dj;Dj 2 D, there are b,C > 0 such that, as p!1 on a fixed triangulation M of D

subordinate to D,
ku� P hukL2ðDÞ 6 C expð�bpÞ 6 C expð�bN 1=dÞ: ð2:35Þ
2.2.1. Piecewise analytic covariance

For piecewise analytic kernels in the sense of Definition 2.15 we have
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Proposition 2.18. Let V 2 L2(D · D) be a symmetric kernel defining the compact and nonnegative integral

operator
V : L2ðDÞ ! L2ðDÞ; ðVuÞðxÞ ¼
Z

D
V ðx; x0Þuðx0Þdx0: ð2:36Þ
If V is piecewise analytic on D · D and (km)mP1 is the eigenvalue sequence of its associated operator (2.36), then

there exist constants c1,V,c2,V > 0 depending only on V such that
0 6 km 6 c1;V e�c2;V m1=d 8m P 1: ð2:37Þ
Proof. Under the assumption of piecewise analyticity of the kernel V(x,x 0) (in the sense of Definition 2.15), the
operator V maps L2(D) into the set of piecewise analytic functions. Define Vm :¼ P hV. Then N :¼
rankVm ¼ Oð1=ðp þ 1ÞdÞ, and, by Proposition 2.17, (2.35) we get kV�VmkBðHÞ 6 C expð�bpÞ 6 C expð�bN 1=dÞ.
Lemma 2.16 then implies (2.37). h

One is often interested in Gaussian covariance kernels of the form
V aðx; x0Þ :¼ r2 expð�jx� x0j2=ðc2K2ÞÞ 8ðx; x0Þ 2 D� D; ð2:38Þ
where r, c > 0 are real parameters and K is the diameter of the domain D. Note that r and c are in this case
referred to as the standard deviation and the correlation length of a, respectively. Since this kernel admits an
analytic continuation to the whole complex space Cd , the eigenvalues decay is in this case even faster than in
(2.37).

Proposition 2.19. If a 2 L2(D · X) and Va is given by (2.38), then for the eigenvalue sequence (km)mP1 of Va it

holds
0 6 km K r2 ð1=cÞ
m1=dþ2

Cð0:5m1=dÞ 8m P 1; ð2:39Þ
where C is the gamma function interpolating the factorial.

Proof. A repetition of the argument in the proof of Proposition 2.18 using as approximations for Va the inte-
gral operators given by the Taylor truncates of Va. h

Remark 2.20. Note that the decay estimates (2.37) and (2.39) are subexponential in dimension d > 1. The
exponent 1/d accounts for higher multiplicity of the eigenvalues in the presence of symmetries in Va and D

and cannot be removed, in general.
2.2.2. Finitely differentiable covariance

So far, we assumed that the kernel function V(x,x 0) is piecewise analytic which implied exponential decay of
the KL-eigenvalues. If the requirement of analyticity of V(x,x 0) is weakened to finite Sobolev regularity, only
algebraic decay holds true.

Proposition 2.21. Let D � Rd be a bounded domain and V 2 L2(D · D) be the symmetric kernel of the compact,

nonnegative integral operator
V : L2ðDÞ ! L2ðDÞ; ðVuÞðxÞ ¼
Z

D
V ðx; x0Þuðx0Þdx0: ð2:40Þ
If V is piecewise Hk,0 := Hk � L2 on D · D with k > 0 and (km)mP1 denotes the eigenvalue sequence of V, there

exists a constant c3,V > 0 such that
km 6 c3;V m�k=d 8m P 1: ð2:41Þ
Proof. Analogous to Proposition 2.18, using (2.34) in place of (2.35). h
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Corollary 2.22. Let D � Rd be a bounded domain and V 2 L2(D · D) be a symmetric kernel defining a compact,

nonnegative integral operator via (2.40). If V is piecewise smooth on D · D and (km)mP1 denotes the eigenvalue

sequence of its associated operator V, then for any s > 0 there exists a constant cV,s > 0 such that
0 6 km 6 cV ;sm�s 8m P 1: ð2:42Þ
2.3. KL eigenfunction regularity

The regularity of the covariance kernel implies corresponding regularity of the KL eigenfunctions. The fol-
lowing result follows immediately from the KL-eigenvalue problem (1.11).

Proposition 2.23. Assume that the covariance kernel Va(x,x 0) is piecewise analytic/ is Hp,q on D · D, in the sense

of Definition 2.15. Then the KL eigenfunctions um are analytic/ Hp in every Dj 2 D.

Pointwise control of KL eigenfunctions is important to establish pointwise convergence of the KL expan-
sion, i.e., convergence in L2(X,dP;L1(D)). This in turn is important to ensure the ellipticity and stable solv-
ability of problems like (1.2) when a(x,x) is replaced by a finite KL-approximation.

Theorem 2.24. For D � Rd a bounded domain and V piecewise smooth on D · D, such that the domains Dj in

Definition 2.15 all have the uniform cone property, we denote by (km,/m)mP1 the eigenpair sequence of the

associated integral operator V via (2.36), such that k/mkL2ðDÞ ¼ 1 8 m P 1. Then for any s > 0 and any

multiindex a 2 Nd there exists cV,s,a > 0 such that
koa/mkL1ðDjÞ 6 cV ;s;ajkmj�s 8m P 1; 81 6 j 6 J : ð2:43Þ
Remark 2.25. Under the regularity assumptions of Theorem 2.24 the estimate (2.43) is optimal in the sense
that for any a it fails to hold with s = 0. This can be seen for instance on D := ]0,1[ by taking
V :¼
X
mP1

km � /m � /m;
where km := e�m and /m(x) := m Æ /(m2x � m) "x 2 ]0,1[, "m P 1, with / 2 C10 ð	0; 1½Þ satisfying
k/kL2ð	0;1½Þ ¼ 1.

Remark 2.26. Further assumptions (like stationarity of a(x,x)) lead to the uniform L1 boundedness of the
eigenfunctions, but not of their derivatives.

For the proofs of the results presented in this section we refer the reader to Appendix A and to [24].
3. Approximate KL expansion

In order to use the (truncated) KL expansion (2.21) in practice, we must be able to compute efficiently and
accurately approximations to the first M KL-eigenpairs in arbitrary domains D. In one dimension, for partic-
ular kernels, explicit eigenfunctions are known (see, e.g. [10]). These can be used to obtain explicit eigenpairs
also for multidimensional tensor product domains D, if the covariance Va(x,x 0) is separable. This is often the
case in subsurface flow problems, where D is a box and the covariance kernel Va is Gaussian as in (2.38). To
deal with random coefficients in arbitrary geometries, however, an efficient numerical approximation of the
eigenpairs of the covariance operator (2.36) is an essential step in the efficient numerical solution of problem
(1.2).
3.1. Galerkin discretization of the KL eigenvalue problem

Let h 2 H be a discretization parameter and let Sh � L2(D) denote the corresponding finite element space.
The variational formulation of the eigenvalue problem reads, in discretized form.
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Find ðkh;m;/h;mÞmP1 � R� Sh such thatZ Z

D�D

V aðx; x0Þ/h;mðx0ÞwðxÞdx0 dx ¼ kh;m
D

/h;mðxÞwðxÞdx 8w 2 Sh: ð3:1Þ
Eq. (3.1) shows that the sequence (kh,m,/h,m)mP1 is nothing but the eigenvalue sequence of the compact, self-
adjoint operator P hKP h in L2(D). Theorem 2.10 implies then (with U = Sh) that an important contribution to
the error introduced by a quasi-KL expansion of the random field a(x,x) comes from the difference between
the traces of the continuous and discretized operator. In order to control the trace discretization error we
make the following.

Assumption 3.1. The eigenpair sequence (km,/m)mP1 of the integral operator V has the property that for any
s > 0 there exists cV ;S;s > 0 such that
k/m � P h/mkL2ðDÞ 6 cV ;S;sk
�s
m UðhÞ 8m P 1; 8h 2 H ð3:2Þ
where the function U : R! R describes the approximation property of the finite element spaces S :¼ ðShÞh2H.

Assumption 3.1 is satisfied again in the case of a piecewise regular kernel K for the standard h finite element
method (piecewise polynomials of degree at most p) with U(h) = hp+1 (see, e.g. [24]).

Based on Assumption 3.1 we prove the main result of this section.

Theorem 3.2. If V 2 L2(D · D) is piecewise smooth on D · D, defining a nonnegative self-adjoint operator V via

(2.36) such that Assumption 3.1 is satisfied, there exists a constant cV ;S > 0 such that
0 6 TrV� Tr P hVP h 6 cV ;SUðhÞ2 8h 2 H: ð3:3Þ
Proof. Fix h 2 H. From the minimax principle we immediately deduce kh,m 6 km "m P 1, so that
TrP hVP h 6 TrV: ð3:4Þ

Further, the obvious identity
V� P hVP h ¼ ðI � P hÞVþVðI � P hÞ � ðI � P hÞVðI � P hÞ

together with the fact that V is nonnegative ensure that (H := L2(D))
hðV� P hVP hÞu; uiH 6 2jhVu; ðI � P hÞuiH j 8u 2 H : ð3:5Þ

Using (3.5) and Assumption 3.1 it follows
TrV� TrP hVP h ¼
X
mP1

hðV� P hVP hÞ/m;/miH 6 2
X
mP1

jhV/m; ðI � P hÞ/miH j

6 2
X
mP1

kmkðI � P hÞ/mk
2
H 6 cV ;S;sUðhÞ2

X
mP1

k1�2s
m : ð3:6Þ
By Corollary 2.22 the series on the r.h.s. of (3.6) converges absolutely, which concludes the proof. h
3.2. Convergence of the discretized KL expansion

From Theorems 2.10 and 3.2 we immediately deduce.

Proposition 3.3. Consider a 2 L2(D · X) such that Va 2 L2(D · D) is piecewise smooth on D · D, defining a

nonnegative self-adjoint operator Va via (2.36). If Assumption 3.1 holds, then there exists a constant cV ;S > 0
such that for any h 2 H and M P 1 the (Sh,M)-quasi KL expansion of a, defined by
ah;Mðx;xÞ ¼ EaðxÞ þ
XM

m¼1

ffiffiffiffiffiffiffiffi
kh;m

p
/h;mðxÞX h;mðxÞ ð3:7Þ
satisfies
ka� ah;Mk2
L2ðD�XÞ 6 cV ;SUðhÞ2 þ

X1
m¼Mþ1

km 8h 2 H: ð3:8Þ
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In applications to partial differential equations with random coefficients, it is necessary to ensure that the
approximate, truncated KL expansion satisfies sign conditions pointwise in x 2 D an P-a.s. in x 2 X. Using
the pointwise eigenfunction bounds Theorem 2.24, it is possible to establish pointwise convergence of the
KL expansion.

Assumption 3.4. The family ðX mÞ1m¼1 of random variables the KL expansion (1.7) is uniformly bounded, i.e.,
9cX > 0 kX mkL1ðX;dP Þ 6 cX 8m P 1: ð3:9Þ

We then have

Theorem 3.5. If Va is piecewise analytic on D · D and if Assumption 3.4 holds, then the KL expansion (1.7)

converges pointwise exponentially. More precisely, there exists c2 > 0 such that for every s > 0 there exists C > 0

with the property that for all M P 1 it holds
ka� aMkL1ðD�XÞ 6 C expð�c2ð1=2� sÞM1=dÞ: ð3:10Þ
4. Fast multipole covariance approximation

Computation of an approximate KL-expansion requires numerical solution of the matrix eigenproblem
corresponding to (3.1), i.e., of
V/ ¼ kM/: ð4:1Þ

If Sp

hðDÞ ¼ spanfbiðxÞ : i ¼ 1; . . . ;Ng, we have
V ii0 ¼
Z

D

Z
D

biðxÞV aðx; x0Þbi0 ðx0Þdxdx0; Mii0 ¼
Z

D

Z
D

biðxÞbi0 ðx0Þdxdx0: ð4:2Þ
Both matrices V and M are symmetric and positive definite, with M being diagonal if we choose as basis of Sp
h

polynomials which are L2(D)-orthogonal and supported on the elements p 2Mh. The size N of the KL eigen-
problem (4.1) can be as large as 106 and dense eigensolvers are not applicable. We compute KL eigenpairs
corresponding to the largest eigenvalues of (4.1) by an iterative Krylov subspace eigensolver [9] which requires
only matrix–vector multiplies.

If a(x,x) is stationary, its covariance is translation invariant, i.e., Va(x,x 0) = Va(x � x 0). If, moreover, D is
an axiparallel cube and the triangulation Mh is uniform and axiparallel, fast Fourier techniques can be used to
realize x! Vx in O(N) operations (e.g. [11]).

For polyhedra in dimension d = 3 and unstructured meshes Mh, Fourier techniques can no longer be
applied. We show in certain situations that for large N the matrix–vector multiplication /! V/ can be done
approximately in O(N logN) operations and memory using a generalized fast multipole method (gFMM)
applicable to general, piecewise analytic correlation kernels Va(x,x 0). It generalizes the Greengard–Rokhlin
[6,12,19] method for the Coulomb potential. Using this cluster approximation of the far field yields a per-
turbed matrix eV and, consequently, perturbed KL-eigenpairs. We estimate the error due to clustering the
far field and show that an expansion order m = O(|logh|) is sufficient to preserve the consistency of the Galer-
kin approximation of the eigenpairs.

4.1. Covariance kernel expansions

Assumption 4.1. Given a separation constant 0 6 g < 1, V a : D� D! C a kernel function and I an index set,
for all x0,y0 2 D, x0 6¼ y0, and expansion orders m 2 N0 there exists a degenerate covariance kernel V m

a

V aðx; yÞ 
 V m
a ðx; y; x0; y0Þ :¼

X
ðl;mÞ2Im

jðl;mÞðx0; y0ÞX lðx; x0ÞY mðy; y0Þ ð4:3Þ
for Im � I�I such that for all x,y 2 D satisfying
jy � y0j þ jx� x0j 6 gjy0 � x0j; ð4:4Þ
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the error V a � V m
a in (4.3) is bounded by
jV aðx; yÞ � V m
a ðx; y; x0; y0Þj 6 Uðm; g; V Þjy � xjs ð4:5Þ
with the convergence rate U(m;g,V) exponentially decreasing with respect to the expansion order m and with
s > 0 denoting the singularity order at x = y.

Note we admit covariance kernels Va which are singular on the diagonal x = y; s P 0 is required due to
(1.1) – the following assertions are actually valid for s > �d.

The purpose of the expansion (4.3) is to decouple the source points y from the field points x. The simplest
example of such a decoupling is Taylor expansion.

If the random field a(s,x) is stationary, the covariance Va is translation invariant:
V aðx; yÞ ¼ V aðy � xÞ: ð4:6Þ

We expand Va(y � x) formally into a Taylor series centered at y0 � x0 with x0; y0 2 Rd :
V aðy � xÞ ¼
X

ðm;lÞ2Nd
0
�Nd

0

ðDlþmV aÞðy0 � x0Þ
ðx0 � xÞl

l!

ðy � y0Þ
m

m!
:

With this we get an approximation (4.3) where:
I :¼ Nd
0 ; Im :¼ fðl; mÞ 2 I�I : jlþ mj < mg;

jðl;mÞðx0; y0Þ :¼ ðDlþmV aÞðy0 � x0Þ;

X lðx; x0Þ :¼ ðx0 � xÞl

l!
; Y mðy; y0Þ :¼ ðy � y0Þ

m

m!
:

ð4:7Þ
Applying the binomial formula the expansion (4.3) can be shifted from x0 to x1 and from y0 to y1 by:
X lðx; x1Þ ¼
ðx1 � xÞl

l!
¼
X
m2Nd

0
m6l

ðx1 � x0Þl�m

ðl� mÞ! X mðx; x0Þ;

Y mðy; y1Þ ¼
ðy � y1Þ

m

m!
¼
X
l2Nd

0
l6m

ðy0 � y1Þ
m�l

ðm� lÞ! Y lðy; y0Þ:
ð4:8Þ
The Taylor expansion coefficients have to be calculated by differentiation of the covariance kernel Va. To
avoid this we interpolate Va(x,y) by Čebyšev polynomials so that only the kernel has to be evaluated at O(md)
different points and no derivatives come into play. Let I := [�1,1], m 2 N0 and Tl(x) = cos(larccos(x)), l 2 Z,
denote the Čebyšev polynomials of the first kind. For any function f, defined on I, we consider the formal
Čebyšev expansion
f ðxÞ ¼
X
l2Z

bf ðlÞT lðxÞ; bf ðlÞ :¼ 1

p

Z 1

�1

f ðnÞT lðnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p dn ð4:9Þ
and the Čebyšev interpolant
fmðxÞ :¼
X
l2Z
jlj<m

bf lT lðxÞ; bf l :¼ 1

m

X
06i<m

f ðxiÞT lðxiÞ; ð4:10Þ
where we assume f to be known at the m Čebyšev-points xi := cos((i + 1/2)p/m) 2 I, i.e., the m roots of Tm.
Employing tensor products,
T lðxÞ :¼
Y

16i6d

T li
ðxiÞ; l 2 Zd ; x 2 Id ; ð4:11Þ
we extend expansion and interpolation to the d-dimensional case with xi denoting the ith component of x 2 Id.
This yields
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f ðxÞ ¼
X
l2Zd

bf ðlÞT lðxÞ; bf ðlÞ :¼ p�d

Z
Id

f ðnÞT lðnÞQ
16i6d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ððnÞiÞ

2
q dn ð4:12Þ
and
fmðxÞ :¼
X
l2Zd

jlj<m

bf lT lðxÞ; bf l :¼ m�d
X
m2Nd

0
mi<m

f ðxmÞT lðxmÞ; ð4:13Þ
where xm :¼ ðxmiÞ16i6d 2 Id .

Remark 4.2. Note that T li
ðxÞ ¼ T�li

ðxÞ,
P

l2Zd

jlj<m

bf lT lðxÞ ¼
P

l2Nd
0

jlj<m

2d�jdl0jbf lT lðxÞ.

For the fast multipole algorithms, we require the following connection between interpolation and expan-
sion from [21]: Suppose f : Id ! R to be a continuous function that admits a Čebyšev expansion. Then inter-
polation (4.13) and expansion (4.12) are related by
bf l ¼

X
f2Zd

ð�1Þjfjbf ð2mfþ lÞ ð4:14Þ
for all l 2 Zd with |l| < m. In particular, the Čebyšev interpolant of Tm, m 2 Zd , is given by (�1)|m�l|/(2m)Tl

where m ” lmod2m. In the following result from [14,21], sufficient conditions on Va(x,x 0) are given for the
validity of Assumption 4.1 with exponential convergence with respect to the expansion order m.

Theorem 4.3. For sufficiently small separation parameter 0 < g < 1, singularity order s P 0 and a kernel

function
V a : D� D! R; V aðx; yÞ :¼ Kðy � xÞjy � xjs; ð4:15Þ

where K admits an analytic extension into Cd n f0g. Suppose v denotes for any x0,y0 2 D, x0 6¼ y0, the affine

transformation
v : Rd ! Rd ; vðnÞ :¼ gky0 � x0k1nþ y0 � x0: ð4:16Þ

Then, the approximation of the stationary covariance Va given by the Čebyšev interpolant of f(Æ;x0,-
y0) := (K � v)|v|s on Id,
V m
a ðx; y; x0; y0Þ :¼

X
l2Zd

jlj<m

bf lðx0; y0ÞT lðv�1ðy � xÞÞ; ð4:17Þ
satisfies the error bound (4.5) with U(m;g,V) = Cexp(�b(g)m). In addition, V m
a admits the representation (4.3)

with
Im :¼ fðl; mÞ 2 Nd
0 �Nd

0 : jlþ mj < mg;
jðl;mÞðx0; y0Þ :¼ ðlþ mÞ!clþmðx0; y0Þ;

ð4:18Þ
where the cl, l 2 Nd
0 , are the coefficients of the interpolation polynomial defined by
X

l2Zd

jlj<m

bf lðx0; y0ÞT l
z

gky0 � x0k1

� �
¼
X
l2Nd

0
jlj<m

clðx0; y0Þzl: ð4:19Þ
Remark 4.4. If the kernel Va belongs to Ck, approximation properties of the Chebysev polynomials and the
L1 stability bounds for the interpolation operator in the Chebysev points imply that V m

a admits the represen-
tation (4.3) with Im as in (4.18), but only with the algebraic convergence rate U(m;g,V) = Cm�k.

Remark 4.5. Theorem 4.3 implies exponential convergence of the Čebyšev-interpolated covariance V M
a for

covariance kernels (4.15) which possibly are singular on the diagonal x = y with singularity order s > �d/2.
An important example is
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V aðx; x0Þ ¼ C expð�cjx� x0jdÞ; 1 6 d 6 2: ð4:20Þ

For d = 2, the kernel is analytic and Galerkin approximations to KL eigenpairs converge exponentially as
p!1, requiring therefore a small, dense matrix V and, in the gFMM, the (mandatory!) choice m = p will
yield no gain in complexity over a dense matrix approach. For d < 2, such kernels exhibit only very low reg-
ularity in the sense of Definition 2.15. Therefore, the Galerkin approximation (3.1) will use subspaces Sp

hðDÞ of
low, fixed polynomial degree p, and convergence by h-refinement. The resulting low, algebraic convergence
rates mean that very large matrix eigenvalue problems (4.1) must be solved to obtain accurate KL eigenpairs.
The exponential error bound exp(�bm) of the FMM implies in this case that m grows polynomially in log N.
The gFMM reduced, in this case, the work of a matrix vector multiply from N2 to a polylogarithmic bound in
N.

To compute (4.18) we interpolate the kernel function by Čebyšev polynomials
V m
a ðx; y; x0; y0Þ ¼

X
l2Zd

jlj<m

bf lðx0; y0ÞT lðv�1ðy � xÞÞ; ð4:21Þ
where the md expansion coefficients are given by
bf lðx0; y0Þ ¼ m�d
X
m2Nd

0
mi<m

ðK � vÞðxmÞjvðxmÞjsT lðxmÞ: ð4:22Þ
Expanding the interpolant by Taylor we get
V m
a ðx; y; x0; y0Þ ¼

X
f2Zd

jfj<m

bf fðx0; y0ÞT fðv�1ðy � xÞÞ ¼
X
f2Zd

jfj<m

bf fðx0; y0ÞT f
y � x� y0 þ x0

gky0 � x0k1

� �

¼
X
f2Nd

0
jfj<m

cfðx0; y0Þðy � x� y0 þ x0Þf ¼
X

ðm;lÞ2Nd
0
�Nd

0

X
f2Nd

0
jfj<m

cfðx0; y0ÞDlþmðzfÞð0Þ ðx0 � xÞl

l!

ðy � y0Þ
m

m!

¼
X

ðm;lÞ2Nd
0
�Nd

0
jlþmj<m

ðx0 � xÞl

l!

ðy � y0Þ
m

m!
ðlþ mÞ!clþmðx0; y0Þ:
Remark 4.6. The coefficients bf lðx0; y0Þ in (4.19)–(4.22) require O(md) kernel evaluations at the Čebyšev points
of order m.
4.2. Cluster expansions

Assumption 4.1 provides an approximation of the covariance kernel which is in general not valid for all
(x,y) 2 D · D. In order to define a global approximation on D · D, a collection of local approximations is
used, where each local approximation is associated with an appropriate block of a given partition of
D · D. We call the blocks clusters and the combination of local approximations cluster expansion.

More precisely, let PðDÞ denote the set of all subsets of D, �rA :¼ infx2Rd supy2Ajy � xj 2 R the Čebyšev radius
of a set A � Rd and �cA 2 Rd with �rA ¼ supy2Ajy � �cAj its Čebyšev center.

Definition 4.7. Suppose C � PðDÞ �PðDÞ to be a finite partition of D · D which is subordinate to D in
Definition 2.15 and let 0 < g < 1 be a separation constant. An element ðr; sÞ 2 C is called g-cluster iff
�rr þ �rs 6 gj�cr � �csj: ð4:23Þ

The set of all g-clusters in C,
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F :¼FðC; gÞ ¼ fðr; sÞ 2 C : ðr; sÞ is g-clusterg; ð4:24Þ

is called far field of grain g and its complement N :¼NðC; gÞ ¼ C nFðC; gÞ the near field of grain g. More-
over, let the kernel Va(x,y) satisfy Assumption 4.1. Then
V m
a ðx; yÞ :¼

V m
a ðx; y; �cr;�csÞ if ðx; yÞ 2 r� s and ðr; sÞ 2F;

V aðx; yÞ otherwise

�
ð4:25Þ
for all (x,y) 2 D · D, x 6¼ y, defines a cluster expansion of the correlation kernel Va(x,y).

Replacing the covariance kernel Va(x,y) in the definition of the matrix V in (4.1) by its cluster expansion V m
a

introduces, for u,v 2 L2(D), an approximate matrix eV:
ðeVÞij ¼ Z
D

Z
D

V m
a ðx; yÞbiðxÞbjðyÞdy dx: ð4:26Þ
The matrix eV may be decomposed according to
eV ¼ Nþ
X
ðr;sÞ2F

XT
r FrsYs ð4:27Þ
with
ðNÞi;j :¼
X
ðr;sÞ2N

Z
r

Z
s

V aðx; yÞbiðxÞbjðyÞdy dx; ðFrsÞl;m :¼ jðl;mÞð�cr;�csÞ;

ðXrÞl;i :¼
Z

r
X lðx; �crÞbiðxÞdx; ðYsÞm;j :¼

Z
s

Y mðy; �csÞbjðyÞdy
for ðr; sÞ 2F and ðl; mÞ 2 Im. In (4.27), the matrix N represents the near field part of eV whereas the sum of
matrices describes the influence of the far field. If the partition C is chosen as discussed in the following
section, N is a sparse matrix. In addition, the matrix vector multiplication related to the far field part can
be evaluated in essentially linear complexity.

Remark 4.8. The matrices Frs are never formed explicitly. Typically, their entries (Frs)lm only depend on l + m
with |m + l| < m. Therefore, O(md) rather than O(m2d) expansion coefficients have to be evaluated and stored
[6,12].

Remark 4.9. The expansions in the previous section preserve symmetry of the kernel Va, i.e.,
V m

a ðx; yÞ ¼ V m
a ðy; xÞ. If, in addition, the given partition C exhibits symmetry, i.e., ðr; sÞ 2 C) ðs; rÞ 2 C, theneV is symmetric.

Remark 4.10. (Collocation) For continuous covariances Va(x,x 0), we may allow in definitions (4.2) and (4.26)
of Vij and eV ij, respectively, the choice bi(x) = d(xi), the Dirac delta function at xi, the barycenter of element
pi 2Mh. Then all integrals in (4.2) and (4.27) become point evaluations and, with the choice M = 1, the matrix
eigenvalue problem (4.1) becomes a collocation approximation of (1.11). The components of / correspond to
point values of piecewise constant approximations of the eigenfunctions.
4.3. Cluster algorithm

Eq. (4.27) specifies an approximation eV of the matrix V which allows to control the approximation
error (see Section 4.4). To reduce the complexity of assembly and storage of V we must choose the par-
tition C appropriately. An efficient way which also provides the desired complexity reduction from N2 to
O(N logN) is to start with a recursive hierarchical decomposition of the mesh Mh represented by a tree
T :¼ ðV;EÞ. An algorithm similar to Algorithm 4.1 might be used to generate such a decomposition,
i.e., T :¼ treeðMhÞ.
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Algorithm 4.1 (ðV;EÞ :¼ tree ðAÞ).

if |A| < c then
return ({A},;);

else
(A0,A1) := split(A)
ðV0;E0Þ :¼ treeðA0Þ; ðV1;E1Þ :¼ treeðA1Þ;
return ðV0 [V1 [ fAg;E0 [ E1 [ fðA;A0Þ; ðA;A1ÞgÞ.

The function split(A) bisects a set of elements A into two disjoint sets A0 and A1 such that the Čebyšev
radius of both sets is reduced. This, for example, could be achieved by splitting the bounding box of A along
the longest side and distribute the elements with respect to the two parts.

Given a hierarchical decomposition T of Mh, it is straightforward to construct a partition C as outlined in
Algorithm 4.2. The decomposition T serves two purposes during the construction process: (i) it defines the
pool V of subsets available for the construction of clusters and (ii) it defines the sets childrenðAÞ :¼
fA0 2V : 9ðA;A0Þ 2 Eg. Calling partitionðMh;MhÞ generates a partition C by specifying its far field F and
near field N. The resulting partition is symmetric in the sense of Remark 4.9.

Note that in Algorithm 4.2 N and F are given in terms of sets of elements p of the triangulation M of
D.

Algorithm 4.2 (ðN;FÞ :¼ partitionðA;BÞ).

if (¨p2Ap, ¨p2Bp) is an g-cluster then
return (;,{(A,B)});

else
A 0 := children(A); B 0 := children(B);S

a2A0 ;b2B0partitionða; bÞ if A0 6¼ ; and B0 6¼ ; and jAj ¼ jBj;S 0 0

8>><

return a2A0partitionða;BÞ if A 6¼ ; and ðjAj > jBj or B ¼ ;Þ;S

b2B0partitionðA; bÞ if ðjAj < jBj or A0 ¼ ;Þ and B0 6¼ ;;
ðfðA;BÞg; ;Þ otherwise:

>>:
The approximate matrix vector product~v ¼ eV~u is evaluated in five steps:

(i) compute~vN :¼ NL~u,
(ii) for all s compute ~us :¼ YL

s~u,
(iii) for all r compute~vr :¼

P
ðr;sÞ2FFrs~us,

(iv) compute~vF :¼
P

rXL
r

T
~vr,

(v) compute~v ¼~vN þ~vF.

Steps (ii) and (iv) can be accelerated using the hierarchical decomposition as it is possible to represent the
matrices Xr and Ys by the corresponding matrices related to children of r and s:
Xr ¼
X

r02childrenðrÞ
Crr0Xr0 ; ð4:28Þ

Ys ¼
X

s02childrenðsÞ
Dss0Ys0 ; ð4:29Þ
where the matrices Crr0 and Dss0 represent so-called shift operators as, e.g., in (4.8). These relationships are
exploited in Algorithms 4.3 and 4.4 which replace steps (ii) and (iv) above, i.e., by scatterðM; uÞ and
~vF :¼ gatherðM; 0Þ. Note that only the matrices Ys and Xr, where s and r are leafs of the decomposition,
are necessary. By Remark 4.8, these matrices contain O(md) entries.
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Algorithm 4.3 (scatterðA;~uÞ).

s := ¨p2A; A 0 := children(A);
if A 0 = ; then
~us :¼ YL

s u;
else
~us :¼

P
a2A0Dss0scatterða;~uÞ with s 0 := ¨p2ap;

return ~us.

Algorithm 4.4 (gatherðA; ~wAÞ).

r := ¨p2Ap; A 0 := children(A);
if A 0 = ; then

return XL
r

Tð~vr þ~wAÞ;
else

return
P

a2A0gatherða;CT
rr0 ð~vr þ~wAÞÞ with r 0 := ¨ p2ap.
4.4. Cluster error

By construction, the local error bound (4.5) remains valid for a cluster expansion:

Theorem 4.11. If the covariance Va(x,x 0) satisfies Assumption 4.1, there are C0,C1 > 0 independent of x,y 2 D

and of m such that for all ðx; yÞ 2 Dj � Dj0 , x 6¼ y and all m it holds
jV aðx; yÞ � V m
a ðx; yÞj 6 C0ðC1gÞmjV aðx; yÞj: ð4:30Þ
The replacement (4.3) of Va(x,y) by the global cluster expansion V m
a in the far field introduces an approximate

bilinear form via
eV mðu; vÞ ¼
Z

D

Z
D

vðxÞV m
a ðx; x0Þuðx0Þdx0 dx 8u; v 2 L2ðDÞ: ð4:31Þ
We associate the perturbed form eV mð�; �Þ with the matrix eV and approximate eigenpairs via the perturbed var-
iational problem:
e/h 2 Sp

h : eV mðe/h; vÞ ¼ ekðe/h; vÞ 8v 2 Sp
hðDÞ: ð4:32Þ
Our purpose is to estimate the error k/m � e/m;hkL2ðDÞ. To apply the classical theory [18], we estimate the error
in the Carlemann operators corresponding to the cluster expansions:

Theorem 4.12. Let a cluster approximation V m
a of the two point correlation Va be given which satisfies

Assumption 4.1 with sufficiently small g. Then the corresponding covariance operators Va and Vm
a satisfy for all

m 2 N for any 0 < g < 1 the error bounds
kVa �Vm
a kL2ðDÞ!L2ðDÞ 6 C0ðC1gÞmjDj2; ð4:33Þ

kVa �Vm
a kL1ðDÞ!L1ðDÞ 6 C0ðC1gÞm: ð4:34Þ
Proof. To show (4.33) we estimate for arbitrary f 2 L2(D)
kVaf �Vm
a f k2

L2ðDÞ ¼
Z

x2D

Z
y2D
ðV aðx; yÞ � V m

a ðx; yÞÞf ðyÞdy
� �2

dx 6 kV a � V m
a k

2
L1ðD�DÞjDj

2kf k2
L2ðDÞ
and refer to (4.30). The proof of (4.34) is analogous. h
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As an immediate consequence, we obtain

Corollary 4.13. If Assumption 3.1 holds, the family fVm
a gm2N of operators converges as m!1 in BðL2ðDÞÞ

and BðL1ðDÞÞ with rate U(m;g,V) = exp(�b(g)m) to Va. The approximate covariance operators fVm
a gm2N are,

in particular, collectively compact in these spaces.

Corollary 4.14. Let P h : L2ðDÞ ! Sp
hðDÞ denote the L2(D) projection. If Assumption 3.1 holds, the family

fP hV
m
a P hgm2N of operators obtained from the cluster approximation with expansion order m converges as

m!1 and h! 0 in BðL2ðDÞÞ and BðL1ðDÞÞ to Va.
The approximate covariance operators fP hV

m
a P hgm2N are, in particular, collectively compact approximations

in the sense of [4] of Va in these spaces.

Corollary 4.14 implies that the abstract error analysis of [18] is applicable to assess the impact of the cluster-
approximation on the approximate KL eigenpairs obtained from P hV

m
a P h.
5. Conclusion

Computation of approximate KL expansions in general domains D � Rd for given covariance function
Va(x,x 0) with gFMM accelerated matrix–vector multiplication is only advised if

(i) the accuracy of the Galerkin eigenpairs of P hVaP h is preserved and
(ii) the complexity of the cluster-approximated matrix–vector multiplication of P hV

m
a P h with the order m

chosen to satisfy (i) is substantially lower than for the full matrix–vector multiplication.

In the case that Va is piecewise analytic in D · D and a p-FEM is used to approximate the KL-eigenfunc-
tions, the gFMM will not yield significant speed up, since the expansion order m must grow proportionally to
the polynomial degree p of the FE subspace in order for the cluster error to match the exponential gFMM
convergence rate.

In the case that Va belongs to Ck in the sense of Definition 2.15, the convergence rate of the Galerkin
approximated KL eigenpairs is at best algebraic, but so is the convergence rate U(m;g,V) of the cluster-approx-
imated operator Vm

a (see Remark 4.5).
Computation of approximate KL-approximations using gFMM is thus preferable over dense matrix eigen-

solvers of the KL EVP only for covariances Va with low regularity in the sense of Definition 2.15 which satisfy
Assumption 4.1.

We mention that for all discrete eigenproblems the solver [9] yielded approximations accurate to about 14
decimals to the first 20 eigenpairs in about 70 iterations, independent of d in (4.20). The results are presented in
Figs. 4.1 and 4.2.
Appendix A. Proof of Theorem 2.24

The proof of Theorem 2.24 is based on the Ehrling–Nirenberg–Gagliardo inequalities (see [1]) to which we
refer the reader for the following result.

Theorem A.1. Let D � Rd be a bounded domain having the uniform cone property and e0 2 (0,1), n 2 N,

p 2 [1,1). Then there exists ce0;n;p;D > 0 such that "e 2 (0,e0] "j 2 {0,1, . . . , n � 1} and "u 2Wn,p(D),
jujj;p 6 ce0;n;p;Dfejujn;p þ e�j=ðn�jÞjuj0;pg; ðA:1Þ
where
juj;pjp :¼
Z

D

X
jaj¼j

joaujp: ðA:2Þ
We note now that piecewise regularity of eigenfunctions follows from that of the kernel V.



Fig. 4.1. Eigenfunctions No. 1, 6, 11, 16 of Gaussian covariance kernel ((4.20) with d = 2, C = 1) on L-shaped domain
D = ]�1,1[2n([0,1] · [�1,0]) for correlation length 0.5, computed using clustering on a regular triangulation of D with 16,384 triangular
elements. PC w. 1GB RAM, generalized FMM and [9] was used.

120 C. Schwab, R.A. Todor / Journal of Computational Physics 217 (2006) 100–122
Proposition A.2. If V 2AD;GðD2Þ=C1D;GðD2Þ=Hp;q
D;GðD2Þ, then the eigenfunctions of the associated Carleman

operator V given by (2.36) corresponding to nontrivial eigenvalues belong to AD;GðDÞ=C1D;GðDÞ=H p
D;GðDÞ.

Proof. The conclusion follows at once from the eigenvalue equation
/mðxÞ ¼
1

km

X
j02J

Z
Dj0

V ðx; x0Þ/mðx0Þdx0 8x 2 Dj; ðA:3Þ
which can be naturally extended to Gj by replacing V by its regular continuation on Gj � Gj0 . h

Proof of Theorem 2.24. We first note that the eigenvalue Eq. (A.3) implies (by differentiating and applying the
Cauchy–Schwarz inequality to estimate the resulting integrals) for any a 2 Nd the existence of a constant
cK,a > 0 such that
koa/mkL1ðDjÞ 6 cK;ajkmj�1 8m P 1; 81 6 j 6 J : ðA:4Þ
We apply now Theorem A.1 on Dj with p = 2, e0 :¼ maxm2Nþ jkmj and choose in (A.1) e = km, u = /m for an
arbitrary m P 1 (we assume w.l.o.g. km 6¼0). It follows that for any n 2 N there exists ce0;n;Dj > 0 such that
for all l 2 {0,1, . . . ,n � 1}



Fig. 4.2. Eigenfunctions No. 1, 6, 11, 16 of exponential covariance kernel ((4.20) with d = 1, C = 1) on unit square D = ]0,1[2 for
correlation length 1, computed using clustering on a regular triangulation of D with 32,768 triangular elements. PC w. 1GB RAM,
generalized FMM and [9] was used.
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j/mjDj;l;2
6 ce0;n;Djfkmj/mjn;2 þ k�l=ðn�lÞ

m j/mj0;2g 6 ce0;n;Dj;Kf1þ k�l=ðn�lÞ
m g 6 ce0;n;Dj;Kk�l=ðn�lÞ

m ; ðA:5Þ
due to (A.4).
Now, for any s > 0 and a 2 Nd we choose l = Ød/2ø + |a| and n > l such that l/(n � l) < s. From (A.5) and

the Sobolev embedding theorems we deduce then
koa/mkL1ðDjÞ 6 ca;Djk/mkHlðDjÞ 6 ca;Dj

Xl

k¼0

j/mjDj;k;2
6 ce0;n;Dj;K;a

Xl

k¼0

k�k=ðn�kÞ
m 6 ce0;n;Dj;K;ak

�l=ðn�lÞ
m

6 ce0;n;Dj;K;ak
�s
m

for all m P 1, and the proof is concluded. h
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